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A complete system of homogeneous solutions of the Dirichlet problem for an anisotropic layer is constructed. These solutions 
represent series containing metaharmonic functions of a complex argument which depends on all three coordinates. The solution 
obtained can be used when considering boundary-value problems of potential theory for a piecewise-homogeneous layer. © 2004 
Elsevier Ltd. All rights reserved. 

Many problems in hydrodynamics, steady heat conduction, electro- and magnetostatics for essentially 
anisotropic media, reduce to the integration of a general second-order differential equation of elliptic 
type. When the corresponding boundary-value problems are being considered for a piecewise- 
homogeneous layer, it is desirable to use the method of homogeneous solutions. This method, which 
goes back to the work of Lur'ye [1], has proved extremely effective in investigating the stress-strain of 
isotropic or transversely isotropic thick plates [2]. However, when bodies with anisotropy of a general 
type are considered, difficulties arise associated with the construction of complete systems of 
homogeneous solutions of the boundary-value problems. In order to demonstrate what is involved and 
point out analytical procedures for constructing homogeneous solutions, a homogeneous Dirichlet 
problem will be considered for an anisotropic layer. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  T H E  O P E R A T O R  A P P R O A C H  

We are concerned with integrating a differential equation of elliptic type with constant coefficients 

L(D)u = 0 
3 

L(D) = ~ a.,na,.a., an = 
m g n ~  1 

anm = amn, a33 > 0 
(1.1) 

in a layer _oo < Xl ' x2 < oo, -h < x3 < h, satisfying homogeneous boundary conditions on the bases of 
the layer 

= 0 (1.2) 

and also the conditions for the solution to attenuate at infinity (Ixll ~ oo, Ix2[ ~ oo). 
The boundary-value problem (1.1), (1.2) will be solved by the operator method. Setting u' = b3u, 

u" = 32u, we represent Eq. (1.1) in the form 

u " + 2 A u ' + B u  = 0 

1 2 2 
A = 1 (a13o31 + a23oq2), B = - - ( a l l C ~  1 + 2a12oqlO 2 + a22o32) 

a33 a33 

Integration of this equation, taking the ellipticity of the operator L(D) into consideration, gives 
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U = e -aX3{cos~x3Cl  + ~-lsinctxaC2} 

ct 2 B - A: 2 2 = = AII~ I + 2A12~1~ 2 + A22~ 2 

All = a11-(a13) 2, Al2 = a'2 a13a23 (1.3) 
2 

a33 \ °33]  °33 033 

a22 (a23) 2 
A2 2 = m _ _ _  > 0 

a33 \a33] 

C 1 = C l ( x  1, x2), C2 = C2(x l, x2) 

To determine the functions Ck(xx, x2) (k = 1, 2) we invoke boundary conditions (1.2). Taking expression 
(1.3) into consideration, we obtain a system of operator equations 

( c o s h o ~ c h h A ) C  l - ( o C I s i n h ~ s h h A ) C 2  = 0 
(1.4) 

( c o s h ~ s h h A  )Cj  - ( o~ -t  s i n h ~ c h h A  ) C  2 = 0 

We introduce the resolvent ~ by relations 

C l .~ ( o C l s i n h o ~ s h h A ) ~ ,  C 2 = ( c o s h o ~ c h h A ) ¥  (1.5) 

Then the first equation of system (1.4) will be satisfied, while the second reduces to the following 
equation for the function ~ = ~(Xl, x2) 

(~-lsin2h~x)lF = 0 (1.6) 

Let us express the operator function occurring in Eq. (1.6) as an operator series. We obtain an equation 
of infinite order in 

l--~0" " 'k (2h)2k+ 1 2tc'~ 
( - t )  (2k+ 1)! ~ )V = 0 (1.7) 

To solve it, we introduce a system of functions ~p: (xl, x2) satisfying the equation 

2 2 
(~ - r t j ) %  = o,  ( 1 . 8 )  

where l-tj are as yet unknown parameters. 
It follows from Eq. (1.8) that ~2~cpj = kt~q~j, and Eq. (1.7), as applied to the function q0j, gives 

l s i n ( 2 h g j ) ~ p j  = 0 
~tj 

Thus, non-trivial solutions of Eq. (1.7) exist, and the corresponding characteristic numbers py are 
defined by the equality 

2hl.t j = n j ,  j = + 1 , + 2 , +  . . . .  

We now require that the solution of Eq. (1.1) should attenuate as r = ~]x 2 + x 2 ~ ~ .  This implies 
that laj is positive, and we can therefore write 

~1/ = Z (PJ (XI' x2) (1.9) 
j = l  

We will now determine the eigenfunctions cpl (j = 1, 2 . . . .  ). 
Introducing a non-singular coordinate transtormation 

xi' = , q - p x 2 ,  x* = . / -~x2 

(1.10) AI--~2 A1---~1 A* = q - p2 > 0 
p = A2 2, q = A2 2, 
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we reduce Eq. (1.8) to the form 

(72 2 
- ' [ j ) ( p j  = O,  j = 1, 2 . . . .  

2 

A'A22 (1.11) 
2 

2 Ixj . a~, = a a 

-- a f t '  a2* -- 

Hence it follows that q0j are metaharmonic functions in the affine variables x], x~. 
We will now consider the construction of a solution of the original boundary-value problem. 

Substituting the functions C1, C2 (1.5) into Eq. (1.3) we obtain 

u = e a ( h - * ~ ) ~ - l s i n [ a ( h + x 3 ) l - ~ e  ~ s in [~(h-x3) ]  ~ 

Introducing expression (1.9) for the function W, we obtain a solution of the original equation (1.1) 
in the symbolic form 

u = u + - u ,  u± = l e ~ ( h ; x 3 ) ~ "  ~-Jsin[(h+x3)gi] (1.12) 
- 2 j~=l ~ j  " 

We will now consider the second solution of system (1.4), setting 

C l = (c t - l s in txhcosAh)q l , ,  C 2 = ( c o s a h s h A h ) ~ ,  (1.13) 

In this case, the second equation of (1.4) is satisfied, while the first leads to the resolvent (1.6). 
Reasoning as before, we arrive at the solution 

u ,  = u+ + u_ (1.14) 

Comparing representations (1.12) and (1.14), we obtain two types of solution of the original boundary- 
value problem (1.1), (1.2) 

U 1 = U+, U 2 = U_; lXj = nj l (2h)  (1.15) 

In the special case of a transversely isotropic medium, the functions (1.12) and (1.14) define solutions 
which are skew-symmetric and symmetric, respectively, with respect to the middle surface of the solution 
layer. 

We will now obtain the result of applying the exponential operator-function to a cylindrical function. 
To do this we introduce a complex variable z ,  = X*l + ix~ = r ,e  '~* and complex differentiation operators 

a 1 ~ a 1 a 

In these variables the form of the operator A will be 

a = [~*a-'~, ~ +~*a-~,;  13" = a13+v*a23a33 = II~*lela' v ,  = i ~ / ~ - p  (1.16) 

Since an arbitrary solution of Eq. (1.11) is the convolution of a simple or double layer with the 
MacDonald function K0(y:r*) [3], it will suffice to consider the application of the operator to this 
function. 

We shall prove the validity of the following equalities 

±A(h  T- x3) . . , 
e /~0(Yjr,) = Ko(TjR+) 

R± = ~r2 ,+(hT-x3)2 l [J , lZ+2r ,  l ~ , l ( h T x 3 ) c o s ( a , - 8 )  = ~ = Iwd (1,17) 

W± = z ,  + 13,(h :F x3) 
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where W is the complex conjugate of W. 
Taking note of the notation (1.16), we have 

A ( h - x , ) . .  i ( h  k ) - a * 

= Ko(Tjr , )  e KotVjr,) -kT. ~, ~z,  + f~*~z, 
k = 0  

(1.18) 

Using the easily proved relations [4] 

b~. f 7)" -i.=. . . Ko(yr) = ~-~) e 1%(7r) 

Ko(Tr) = ~-~) e t%wr) 

ict 
Z = X l + i x  2 = re , n = O, 1 , . . .  

we obtain, after some reduction, 

I~ b - 0 ~2k 
( , ~ T ~ , + I 3 , ~ T , )  Ko(Tjr*)= 

: ' 

~ ~m~- '%os[2m(~ ,  - 8)lK2,~(Tjr , )  
m = 0  

*~Z, ~*~Z,)  K°(TJr*)= 

= - ~ ]~ C~2,+,cos[(2m+ 1) (a ,  
m = O  

k = O ,  1 . . . .  

~m = I 1 / 2 '  m = 0 = m! 
[1, m = 1,2 . . . .  ' Cnm n ! ( m - n ) !  

- ~ ) ] K 2 m + l ( T j r , )  

(1.19) 

Substituting expressions (1.19) into (1.18) we obtain 

A(h-x3) . . 
e KotTjr,) = X 1 - X  2 

X 1 - -  2 ~z~ i~mCOS[2m(lX, - 5)]IEm[Yjl~,l(h- x3)]K2m(7jr*) 
m = 0  

X 2 = 2 ~ cos[(2m + 1) (a ,  - ~ ) ]12m + l [T j l [~* l (  h -- X3)]K2ra+ l ( T j r , )  
m = O  

where Kn(z), In(z) are the MacDonald function and the modified Bessel function, respectively, of order n. 
Finally, using the Graf Addition Theorem [5], we obtain equality (1.17) with the plus sign chosen. 

Replacing h by -h in that equality, we obtain (1.17) with the minus sign chosen. Incidentally, relations 
(1.17) are of independent interest in the theory of cylindrical functions. 

Thus, using formulae (1.17), we obtain a coordinate realization of the operator equalities (1.15) in 
the form 

U 1 = U + ,  U 2 = U_ 

u± = 1 ~, 1Ko(y,R+)sin[(h + x3)l.tj] 
Z .¢.~ i1 + 

j= lr-J 

(1.20) 
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The functions un = u,,(xl, x 2, X3) (1.20) have discontinuities of the second kind on the curves IV_+ = 0. 
Taking the expressions (1.17) into account for the complex variable IV_+, we obtain a pair of straight lines 

x I = al3(x 3+h) ,  x 2 = a23(x 3__.h) 
a33 a33 

where the upper sign corresponds to the function u 2 and the lower one to ul. As one might expect, in 
the case 413 = a23 = 0 functions (1.20) have discontinuities in the interval -h < x3 < h of thex3 axis. 

2. THE G E N E R A L  F O R M  OF H O M O G E N E O U S  S O L U T I O N S  OF 
B O U N D A R Y - V A L U E  P R O B L E M  (1.1) ,  (1.2) 

It is obvious from the construction of the homogeneous solutions (1.20) that the function K0(TyR+) is 
a solution of the Helmholtz equation 

where 

+ - v   '(vjlw+l) = 0 (2.1) 

x ,  = ReW+, y ,  = ImW,, Iw.l = R+ (2.2) 

Similarly, the function Ko(TjR) is a solution of the equation with the subscript plus replaced by minus 
in (2.2). 

We shall show that expressions (1.20) yield solutions of boundary-value problem (1.1), (1.2) if the 
MacDonald function K0 in them is replaced by an arbitrary sufficiently smooth solution of Eq. (2.1). 
To do this, we write the function ul in the form 

u l =  ~1 ~ j ~ s i n  [(h + x3)gj] (2.3) 
j= 

+ + 
The quantities ~.lj we re  defined above, and the functions ~j  = ~ j  (x,, y , )  are solutions of Eq. (2.1) in 
the case (2.2). 

Substituting expression (2.3) into Eq. (1.1) we obtain the system 

AcD~. = 0, BcD~. + 2 A 0 3 .  ~. = 0 (2.4) 

/~ = al3a I + a23a 2 + a3303 
2 2 2 2 

= all3 n + 2a12~102 + a22b 2 - a 3 3 ~  3 - a331.t j 

The first equation of this system is satisfied by any continuously differentiable function ~(x , ,  y ,) .  
Indeed, in the variables IV+, W+, defined by the last equalities of (1.17) it becomes 

a,x, l 
Re (a13 } = 0 (2.5) 

and this is an identity by virtue of relations (1.16). 
The second equation of system (2.4) may be written, using equality (2.5), as 

( ~2(i)+" ~ 2 + ~ ( I ) j  2 + 
2 R e | a ~ |  + 2b-----------=- a33gj~ j = 0 

k bW+) bW+aW+ 

a = all + 2alzV , + a22v2, - 2[3,(a13 + a23v,) + a33]32, 

b = all + al21v,[ z + a33[~,[ 2 + 2Re(axzV , - a13[3, - az3v ,~ , )  

(2.6) 

Invoking now the formulae for [3, and v ,  from (1.16), we find 

a = 0, b = 2a33A*A22 



892 L.A. Fil'shtinskii 

Consequently, Eq. (2.6) is identical with (2.1), as required. 
A second solution u2 may be constructed in the same way as solution (2.3), differing from (2.3) in 

that x3 is replaced by -x3 and q~- by ~ ]  = ~ ]  (x,, y , )  - the solution of Eq. (2.1) in the case when the 
subscript plus in (2.2) is replaced by minus. 

The essential difference between the homogeneous equations obtained here and the known analogous 
solutions, which correspond to isotropic or transversely isotropic media, is that they cannot be constructed 
by separation of variables in Cartesian coordinates xg (k = 1, 2, 3). This follows from the fact that the 
function ~ depends on all three variables xl, x2, x3. 

3. D I S C U S S I O N  O F  T H E  R E S U L T S  

In cases when la131/a33 ~ 1, la23]/a33 ,~ 1, one can use an approximate procedure to construct 
homogeneous solutions. Retaining only the zeroth and first powers of the operatorA in the first relation 
of (1.12), we can write 

A(h - x3)(p j 
e = cpj + (a13~ 1 + a23t)2)cPj = fj 

Hence, and from the first relation of (1.15), we find that 

u,= ~sin[(h+x3)~tj]fj (3.1) 
j= 

Similarly, one obtains a second solution, u2, differing from (3.1) in that x3 is replaced by -x3 and a33 
by ---a33. 

In the general case, one can find solutions which are symmetric and skew-symmetric about the origin 
by combining the functions Ua and u2. It is obvious from equalities (1.17) that 

W + ( - x  1 , - x  2 , - x 3 )  = - W  (Xl, X 2 , x  3) 

Applying the following substitution to formula (2.3) and the analogous formula for u2, 

4- 
(1);(Xl , X2, X3) ----" --(I)j (--Xl,--X2, --X3) 

we obtain the corresponding solutions 

4- 
U = U 1 + U2, U = U 1 -- U 2 

Expression (3.1) for Ul and the analogous expression for u 2 may be used when solving boundary-value 
problems for a piecewise-homogeneous medium, such as a layer with continuous tunnel cavities or slits. 
When that is done, the corresponding problems reduce to systems of homogeneous singular integral 
equations. When that method is adopted, however, problems associated with the existence of small 
parameters for singular operators are overlooked. From that point of view, it is preferable to start with 
the exact expressions (1.20), introducing convolutions of MacDonald functions with a double layer on 
the surface of inhomogeneity. The integral representations thus obtained for the solutions of boundary- 
value problems serve as the starting point for reducing the latter to two-dimensional integral equations. 
The effectiveness of analytical and numerical procedures remains to be evaluated. 
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